mond us falso again anto us provoje me sat 1/01/2008 FSS.0001.0080.6622 on deck lysis # DNA IQ™ Method of Extracting DNA from Blood and Cell Substrates | 1 PURPOSE AND SCOPE | | |---|-------------| | 2 DEFINITIONS | | | 3 PRINCIPLE | | | 4 REAGENTS AND EQUIPMENT | 4 | | 4.1 Reagents | 4 | | 4.2 Equipment | 6 | | 5 SAFETY | 6 | | 6 SAMPLING AND SAMPLE PREPARATION | | | 7 PROCEDURE | 8 | | 8 SAMPLE STORAGE | <i>,</i> 14 | | 9 TROUBLESHOOTING | | | 10 VALIDATION | | | 11 QUALITY ASSURANCE/ACCEPTANCE CRITERIA | | | 12 REFERENCES | | | 13 STORAGE OF DOCUMENTS | | | 14 ASSOCIATED DOCUMENTS | | | 15 AMENDMENT HISTORY | | | 16 APPENDIX | | | 16.1 Reagents Calculation Tables | | | 16.2 Manual method for extraction using DNA IQ™ | | | 16.2.1 Sampling and Sample Preparation | 19 | | 16.2.2 Procedure | 20 | | 16.2.3 Sample storage | 22 | | | | The increase of extraction buffer volume to 500μL for use with the Slicprep™ 96 device. - The increase of Lysis Buffer volume to 957μL proportional to the increase of Extraction Buffer volume, according to the manufacturer's instructions. - ο <u>Double Elution step</u>, with an Elution buffer volume of 60μ L for a final volume of 100μ L. - The use of NUNC Bank-It tubes for storage of final extracts. Cell lysis is performed with Promega Lysis Buffer containing Dithiothreitol (DTT). 1,4 Dithiothreitol is a reducing agent used in extractions to break disulfide bonds of proteins. The Lysis Buffer used is a proprietary buffer containing chaotropic salts required for binding of DNA to the magnetic beads. According to the MSDS, the lysis buffer contains 50-75% guanidinium thiocyanate, < 2.5% EDTA, < 2% 3-[(3-Choalamidopropryl)dimethylammonio] propanesulfonic and < 2% polyethylene glycol tert-octylphenyl ether. The basis of the DNA IQ™ kit is a magnetic bead resin which contains novel paramagnetic particles covered with silica. The magnetic bead resin usually has a DNA binding capacity of 100ng but the addition of Pro K will increase the binding capacity. Samples with small amounts of DNA are more efficient than samples with large amounts of DNA, and as a result a small sample size is critical to ensure efficient recovery of DNA. The magnetic beads with silica have a negative charge at basic and near neutral pH. The Lysis Buffer changes the pH and salt concentration of the solution and the silica on the magnetic beads becomes positively charged which is then able to bind the DNA. Several washing steps are employed in the protocol to remove inhibitors. The first washing step is performed with Lysis Buffer. This wash ensures the DNA is bound to the magnetic bead resin and washes out inhibitors. The next three washing procedures are with a 1xWash Buffer. This buffer contains an alcohol/aqueous mixture which ensures the DNA is not eluted during washing by keeping the DNA dehydrated, and aqueous phase washes out the inhibitor. Elution buffer removes the DNA from the magnetic bead resin. The Elution Buffer changes the salt content. Heating the complex to 65°C allows the DNA to be released from the magnetic beads. The Elution Buffer is a low ionic strength buffer that reduces the affinity of the DNA for the silica that covers the magnetic beads, by re-hydration of the phosphate backbone. The DNA IQ™ kit isolates DNA greater than 80bp, smaller DNA is removed selectively to prevent PCR inhibition. #### MultiPROBE® II HT EX Plus with Gripper™ Integration Platform Within Forensic Biology, blood and cell extractions are performed using 2 MultiPROBE® II PLUS HT EX with Gripper™ Integration platforms (Extraction Platform A, EP-A) and (Extraction Platform B, EP-B) perform casework or reference samples. Each platform uses a computer – controlled Cartesian X-Y-Z liquid handling system designed for the efficient automation of sample preparation. Liquid transfer is performed by an 8-tip System with VersaTip® and VariSpan™ options. The VersaTip® option allows the use of fixed and/or disposable tips (both clear and conductive). The VariSpan™ option permits variable probe spacing between each of the individual probes so that a wide range of labware such as micro plates, tubes, vials and reagent troughs can be accessed. Each sample probe is capable of independent motion in the Z direction due to independent Z drives. Table 2. Table of reagent volumes. | Reagent (volume per sample) | Constituent (volume per sample) | Volume req d for 96
Samples (mL) | Volume regid for 48
Samples (mL) | |---|--|-------------------------------------|-------------------------------------| | Futurally Duffer | TNE buffer 462.5µL | 54 | 27 | | Extraction Buffer | Prot K (20 mg/mL)25.0 μL | 2.9 | 1.5 | | (500 μL/sample | SDS (20 %) 12.5µL 1.5 | | 0.7 | | Lysis buffer (with DTT) | Lysis buffer (no DTT) | 130 | 66 | | (1.127mL/sample) | DTT (add to Lysis buffer) 1.3 | | 0.66 | | Lysis Buffer (with DTT)
Reagent Trough | As above | 125 | 63 | | DNA-IQ RESIN Solution | Lysis buffer (with DTT)
(from above) 43µL | 6 | 3 | | (50µL/sámple) | DNA IQ RESIN 7µL | 1 | 0.5 | | DNA 10 1X Wash Buffer (300µl/sample) | I See Helow for preparation | | 18 | | DNA IQ Elution Buffer (120µl/sample) Use directly from Kit | | 14 | 8 | NOTE: For batches not equal to either 96 or 48 samples samples, refer to Appendix Reagents Calculation Tables. Table 1 for batches of <48 samples and Table 2 for <96 (but >48) #### **Extraction Buffer** Prepare the buffer just before extraction in a 100mL sterile glass bottle according to the table 2. Use one aliquot of 20mg/mL Proteinase K (1.5mL) for a 48 sample run and two aliquots of Proteinase K for a 96 sample run. Remove aliquot/s of Proteinase K from the freezer, defrost, vortex and centrifuge before use. Ensure that the 20% (v/v) SDS is completely dissolved (clear) in the stock solution before making the extraction buffer. If not dissolved invert the container a few times and leave longer at room temperature. # Lysis Buffer with DTT Lysis buffer is supplied with the kit. Lysis buffer with DTT is prepared at the start of each run. Remove the DTT from the freezer, defrost, vortex and centrifuge before use. Into a sterilised glass bottle, add 1.3mL of DTT to 130ml of Lysis buffer for 96 samples. If 48 samples are to be run, use 660µl of DTT to 66ml of Lysis buffer, again, made up in a sterile glass bottle. Make up the Lysis buffer with DTT within the Laminar Flow and ensure that full PPE is worn, including face shield. Warning: Lysis Buffer and DTT are toxic. # **DNA IQ™ Resin** DNA IQ™ Resin is supplied with the kit. The resin is prepared at the start of each run in a 10mL sterile tube. Ensure the resin is properly mixed by vortexing before pipetting. Look for calculations in table 2 for the correct volumes of resin and lysis buffer (with DTT). In the 10mL tube, mix by inversion before adding to column 4 in the 12-channel reagent plate. # 1X Wash buffer 2X Wash buffer is supplied with the kit. Once a new kit has been opened, add 35mL of *AnalR* Ethanol and 35mL of Isopropyl alcohol to the 2X wash buffer. Once the reagents have been added, label the lid and side of the bottle with "1X Wash buffer," initial and date. #### 6 SAMPLING AND SAMPLE PREPARATION Samples waiting to be extracted are stored in freezers as described in Table 5. Table 5. Sample storage locations. | Sample type | Storage Device | Storage Location | |-------------------------------------|---------------------------------------|------------------| | Urgent/High/Medium Priority Samples | Freezer | 6117-2 | | Medium Priority Samples | Walk in Freezer or Freezer in
6117 | 6109 or 6117-5 | | Low Priority Samples | Walk in Freezer or Freezer in 6117 | 6109 or 6117-5 | # QC samples All extraction batches require two controls to be registered. These controls, UR numbers and positions are listed in Table 6. Table 6. Extraction Quality Controls | QC Name | UR Number | Description | |------------------|-----------|------------------------------------------------------------| | Negative Control | FBOT33 | Negative Extraction control – Empty well | | Positive Control | FBOT35 | Positive extraction control - Known Donor dried blood swab | # Registration of QC - 1. Log into the AUSLAB Main Menu. - 2. Select 1. Request Registration. - 3. Select 2. Full Reception Entry. - 4. Scan in barcode of control. - 5. Enter the UR number as per Table 4 and press [Enter]. - 6. Enter the appropriate Specimen type (e.g. Blood for blood control). - 7. Request a **9PLEX** test, when prompted to enter the processing comment, enter **EXTP** (Positive extraction control) or **EXTN** (Negative extraction control). - 8. Enter LAB in the Billing code field. - 9. Press [F7] Save to save the Billing details. - 10. Press [F4] Save twice to save the registration details. N.B Quality controls should not have a DNA priority allocated at time of registration to ensure they are included in the top positions of a batch # **Create the Extraction Batch** - 1. Log into the AUSLAB Main Menu. - 2. Select 5. Workflow management. - 3. Select 1. DNA workflow table. - 4. Highlight the appropriate Extraction batch type and press [F5] Batch Allocation. - 5. Press [F6] Create batch. - 6. Press [F8] Print menu. - 7. Press [F6] Print Batch label. (print 7) - 8. Press [F7] Print Sample Label. (print 3 sets) - 9. Press [F8] Print Worksheet. (print 2) - 10. Press [SF5] Main menu. - 11. Press [SF11] Print. - 12. Press [SF6] Accept batch. - 13. Press [Pause/Break] to exit to the Main Menu. - 14. Obtain worksheets (FBLASER3) and labels (FBLABEL13-16) from the Analytical Section printing bench (Room 6117). The next three washes are with 1X Wash buffer (100µL), shaking @ room temperature for 1 min. During each wash cycle, the plate is moved to the PKI Magnet and the supernatant is discarded. (this occurs at steps 30-68 of the protocol) - 6. Removing any excess of 1X Wash buffer: air dry @ room temperature for 5 min. (this occurs at step 69 of the protocol) - 7. Elution of DNA from the Resin-DNA complex: Add Elution buffer (60µL) and incubate @65 °C for 6 minutes (3 min no shaking and 3 min shaking). The plate is moved to the PKI Magnet. The eluted solution (supernatant) is removed to the NUNC tubes. Step 7 is repeated twice. (this occurs at steps 71-92 of the protocol) - 8. Flushing of capillaries: The capillaries are washed with Amphyl and nanopure water. # Preparation of Reagents prior to extraction - 1. Defrost Prot K and DTT - 2. Refer to table 2 for reagent volumes to make up the required amount of Extraction Buffer, Lysis buffer (with DTT) and Resin solution. Also measure the required amount of 1X Wash buffer. - 3. Record the Lot numbers of all the reagents used onto the AUSLAB worksheet. # Setting up the EP-A or EP-B MPIIs #### These steps are to be carried out in the Automated extraction Room (Room 6127) - 4. Turn on the instrument PC. - 5. Log onto the network using the Robotics login. - 6. Double click the WinPrep® icon on the computer desktop (Figure 1). - 7. Log onto the WinPrep® software by entering your username and password, then press "Enter". - 8. Ensure the System Liquid Bottle is FULL before every run and perform a Flush/Wash. - Ensure that the daily/weekly start-up has been performed before running any program. If WinPrep® has been closed or been idle for a long period of time initialise the MP II platform as described in QIS 23939. - 10. Open the Extraction setup MP II test file in WinPrep® by selecting: - File - Open, navigate to C:\Packard\MultiPROBE\Bin\QHSS protocols - Select "DNA IQ Extraction_Ver1.3.mpt." - Click the "Open" button - 11. Check the whole program there are no bold fonts (e.g. plates may lose gripability and the program will not run). See the line manager. - 12. Decontaminate the required labware by wiping with 5% TriGene followed by 70% ethanol before placing the labware on to the designated grid positions as outlined in the virtual deck view within WinPrep® (Figure 2). - generated "NUNC" barcode to the right side of the nunc tube rack. Then place nunc rack into position B16 - 17. On an Axygen 2ml deep well Storage plate, label the left side of the plate with both the Batch ID and barcode. Label the right side of the plate with a B1-Lite generated "STORE" barcode. Then place in position C13. - 18. **Slicprep™ 96 device**: Gently remove septa mat from Slicprep™ 96 device and check that substrates are at the bottom of the Spin baskets, if not push them down with a sterile disposable tip and place the Slicprep™ 96 device into position **E13**. - 19. In I drive from Extraction folder open the required plate map. Check that the plate map is complete. If there are blanks (samples that have been removed), make all volumes to 0. If it is not a full batch, delete the rows of blank samples at the end of the platemap, then save the changes. Copy the plate map to the following file path: C:\Packard\Ext Plate MAPS - 20. After ensuring that all the necessary labware has been positioned in the correct grid position as displayed within WinPrep®, click the "EXECUTE TEST" button. While the test is loading, record all run information in the Run Log book. - 21. Click "Reset Tip Boxes" and ensure that the number of tips displayed in this window match those as available on the deck platform. Fill new tips if necessary. Click "Close" to accept the tip count, followed by clicking "Next" - 22. Select the correct platemap by browsing to C:\PACKARD\EXT PLATE MAPS. Ensure that the platemap selected matches the batch ID affixed to the 96-well Slicprep™ 96 device in position D16. Once this has been done, click "Start", to continue. - 23. After the barcodes have been read, a user prompt will appear as a reminder to: "Ensure - 1. Shaker and heat box are on. - 2. Deck has been populated correctly. - 3. The Lysis buffer is on the left side and Extraction buffer is on the right at A13." Click "OK" to continue. - 24. Once the extraction buffer has been added to the plate, a message will appear waiting for the heating tile to reach 50°C (real temp 37°C). When current temperature reaches 50°C click "Continue". - 25. The next prompt that appears will request the following: "Cover Slicprep with the Aluminium sealing film, then place in position F19. Press "OK." - 26. After shaking, a User Prompt will appear with the following directions: "Remove plate, add white plastic collar and centrifuge 5mins at 30. - "Remove plate, add white plastic collar and centrifuge 5mins at 3021rpm, then in the cabinet, remove the spin basket part and place it in the empty 1 ml tip container." - Place the Slicprep[™] 96 device into the plate centrifuge and ensure the correct balance plate is used. Once the plate has been centrifuged, carry the plate to the hood and remove the basket of the Slicprep[™] 96 device, storing the basket in an empty 1mL tip box, discard the Collar. Complete the step by clicking "**OK**". - 27. Add the Resin to the 12 Channel plate. Pipette mix thoroughly. Then dispense 50uL of resin into each well of the Slicprep™ 96 device. # Recording Reagent Details and other information in AUSLAB - 41. To record reagent lot numbers, log into the AUSLAB Main Menu. - 42. Select 5. Workflow Management. - 43. Select 2. DNA Batch Details. - 44. Scan in the Extraction Batch ID. - 45. Press [F6] Reagents. - 46. Press [SF8] Audit. - 47. Press [**F5**] *Insert Audit Entry*, enter the lot number details, operator name and Extraction platform the batch was run on and press [**Enter**]. ### Importing the MP II log file into AUSLAB - 48. To extract the MP II log file, click on the Microsoft Access icon in the WinPrep® main menu to open the MultiPROBE log database. - 49. Click on the relevant run Test ID in the Test Selection box. In the Report/Query/Action Selection dropdown menu, select "Report: Test Summary (Sorted by Destination Rack ID)" - 50. In the Output Selection dropdown menu, select "File". Save the output file as *.csv format to C:\Packard\Ext Plate Maps\Ext Logs with the same name as the AUSLAB batch ID and click "Apply". (refer to figure 4. below) Figure 4. The MultiPROBE log database for collecting MP II run information - 51. Open the log file and check for any errors that may have arisen during the Extraction process. Compare the listed errors to any that were encountered during the run. Report any critical errors to the line manager. - 52. Copy the log file to I:\EXTRACTION\EXT A MPII\Logs or I:\ EXTRACTION\EXT B MPII\Logs for uploading to AUSLAB. - 53. Log into the AUSLAB Main Menu. - 54. Select 5. Workflow Management. - 55. Select 2. DNA Batch Details. - 56. Scan in the Extraction Batch ID barcode. - 57. Press [SF6] Files. - 58. Press [SF6] Import Files. - 59. AUSLAB prompts "*Enter filename*"; enter the filename and extension and press [Enter]. (e.g. I:\EXTRACTION\EXT A MPII\Logs\CWIQEXT20071115_01.csv) - 60. AUSLAB prompts "Is this a result file Y/N?" enter N and press [Enter]. - run, Initialise the instrument and restart the run. If problem persists, shutdown the MPII and PC, restart and then initialise the whole instrument. Otherwise, contact your line manager. - c. Calibrate relevant labware using the SlicPrep Calibration plate. This has preset standardised positions that need to be the same on all labware where the Slicprep plate is being moved. The same plate is used on both extraction platforms A and B. - d. Check the calibrations against the run program DNAIQGripperTest.pro. This program moves the Slicprep across all the labware the gripper moves across. Start with the Slicprep at D16. - 5. In steps 18 or 26, if a message is stating that the instrument is having a motor problem when picking up 1 mL tips and the only option is to Abort, abort, initialise and open program version **1.3a** (if the problem is in step 18) or version **1.3b** (if the problem is in step 26). As the program will start the gripper will pick up the plates, it is not necessary that the Nunc tube rack is in position (B16), only ensure that it is reading the correct barcode. It is **important not** to place the Slicprep in the original position (E13) as the Slicprep plate has the Spin basket part removed (ie keep at D16), ensure it will scan the correct batch barcode. The Store plate remains in the original position. If the problem persists even after restarting, replace the rack of disposable 1 mL conductive sterile MBP tips for a new one. - 6. If the program has already started step 18 and the previous message is appearing, you need to abort. Initialise the instrument and open program version 1.3a. Go to the plate map in C:\PACKARD\ EXT PLATE MAPS and change volume to 0 for all the samples that the Lysis Buffer have been dispensed (Column 6), ensure that the number of samples where the Lysis buffer was added is the same as the ones where the volume needs to be changed. Save the changes and use this plate map for the restart of the program. Please read troubleshooting 5 for barcode reading of plates. If the problem persists even after restarting, replace the rack of disposable 1 mL conductive sterile MBP tips for a new one. - 7. If the program has already started step 26 and the previous message is appearing, you need to abort. Initialise the instrument and open program version 1.3b. Go to the plate map in C:\PACKARD\ EXT PLATE MAPS and change volume to 0 in all the samples that the Lysis Buffer and Ext buffer have been removed (Column 9), ensure that the number of samples where the solution was removed is the same that the ones the volume need to be changed. Save the changes and use this plate map for the restart of the program. Please read troubleshooting 5 for barcode reading of plates. If the problem persists even after restarting, replace the rack of disposable 1 mL conductive sterile MBP tips for a new one. - 8. If a disposable tip gets stuck on the 8 tip arm during disposal of tips a user message will appear. Remove and press retry and then continue. - 9. If the message: - 7. Mandrekar, P., V., Flanagan, L., & Tereba, A., Forensic Extraction and Isolation of DNA Form Hair, Tissue and Bone. Profiles in DNA, 2002: p. 11. - 8. Mandrekar, P.V., Kreneke, B. E., & Tereba, A., DNA IQ™: The Intelligent Way to Purify DNA. Profiles in DNA, 2001: p. 16. - 9. Marko, M.A., Chipperfield, R., & Birnboim, H.C., A Procedure for the Large Scale Isolation of Highly purified Plasmid DNA using alkaline extraction and binding to glass powder. Anal. Biochem., 1982. 121: p. 382-387. - Melzak, K.A., Sherwood, C.S., Turner, R.F.B. & Haynest, C.A., Driving forces for DNA Adsorption to Silica in Percholorate Solutions. J. Colloid. Interface Sci., 1996. 181: p. 635-644. - 11. PerkinElmer, Automated DNA IQ™ System for Mixed Casework Sample DNA Isolation. MultiPROBE II Liquid Handling Forensic Workstation Application Guide, 2004: p. 1-25. - 12. Promega, FAQs -DNA IQ™ System. - 13. Promega, Protocols & Applications Guide. Chapter 9. rev. 7/06. - 14. Promega, DNA IQ™ System -Small Casework Protocol. Promega Technical Bulletin #TB296 2006. Rev 4/06: p. 1-14. - 15. Promega, DNA IQ™ System-Database Protocol. Promega Technical Bulletin #TB297, 2006. Rev 4/06: p. 1-14. - 16. Promega, Tissue and hair Extraction Kit (for use with DNA IQ™) Protocol. Promega Technical Bulletin #TB307, 2006. Rev 5/06: p. 1-11. - 17. Schiffner, L.A., Bajda, E. J., Prinz, M., Sebestyen, J., Shaler, R. & Caragine, T.A., Optimisation of a Simple, Automatable Extraction Method to Recover Sufficient DNA from Low Copy Number DNA Samples for Generation of Short Tandem Repeat Profiles. Croat Med J, 2005. 46(4): p. 578 -586. - 18. Vandenberg, N., van Oorchot., R. A. H., & Mitchell, R. J., An evaluation of selected DNA extraction strategies for short tandem repeat typing. Electrophoresis, 1997. 18: p. 1624-1626. #### 13 STORAGE OF DOCUMENTS All worksheets are stored in the Analytical area (Room 6117). #### 14 ASSOCIATED DOCUMENTS - QIS 17120 Operational Practices in the DNA Dedicated Laboratories - QIS 17142 Examination of Items - QIS 17171 Method for Chelex Extraction - QIS 17165 Receipt, Storage and Preparation of Chemicals, Reagents and Test Kits - QIS 23939 Operation and Maintenance of the MultiPROBE® II PLUS HT EX and MultiPROBE® II PLUS HT EX with Gripper™ Integration Platform - QIS 24255 Analytical Sample Storage - QIS 24256 Sequence Checking with the STORstar Instrument - QIS 24469 Batch functionality in AUSLAB # 15 AMENDMENT HISTORY | Revision | Date | Author/s | Amendments | |----------|-------------|---------------------------|----------------------------| | 0 | 23 Oct 2007 | B. Gallagher, T. Nurthen, | First Issue | | | | C. lannuzzi, V. Hlinka, | | | | | G. Lundie, I Muharam. | | | 1 | 12 Dec 2007 | M Harvey, C lannuzzi, A | Reviewed and updated after | | | | McNevin | initial training | | | | | | # 16.2 Manual method for extraction using DNA IQ™ # 16.2.1 Sampling and Sample Preparation Samples waiting to be extracted are stored in freezers as described in Table 3. Table 3. Sample storage locations. | Sample type | Storage Device | Storage Location | |-------------------------------------|-----------------|------------------| | Urgent/High/Medium Priority Samples | Freezer | 6117-2 | | Medium Priority Samples | Walk in Freezer | 6109 | | Low Priority Samples | N/A | | #### QC samples All extraction batches require two controls to be registered. These controls, UR numbers and positions are listed below in Table 4. Table 4. Extraction Quality Controls | QC | UR Number | Extraction types | | |-----------------|-----------|------------------|---------| | Neg Control | FBOT33 | All | 4. / 4. | | QC swab (blood) | FBOT35 | Blood | 11 10 | - 1. Log into the AUSLAB Main Menu. - 2. Select 1. Request Registration. - 3. Select 2. Full Reception Entry. - 4. Scan in barcode of control. - 5. Enter the UR number as per Table 4 and press [Enter]. - 6. Enter the appropriate Specimen type (e.g. Blood for blood extraction). - 7. Request a **9PLEX** test, when prompted to enter the processing comment, enter **EXTP** (Positive extraction control) or **EXTN** (Negative extraction control). - 8. Press [F7] Enter LAB in the Billing code field. - 9. Press [F4] Save to save the Billing details. - 10. Press [F4] Save to save the registration details. # N.B Quality controls should not have a DNA priority allocated at time of registration to ensure they are included in the top positions of a batch #### **Create the Extraction Batch** - 15. Log into the AUSLAB Main Menu. - 16. Select 5. Workflow management. - 17. Select 1. DNA workflow table. - 18. Highlight the appropriate Extraction batch type and press [F5] Batch Allocation. - 19. Press [F6] Create batch. - 20. Press [F8] Print menu. - 21. Press [F6] Print Batch label. (for the deep well plate) - 22. Press [F7] Print Sample labels. (print four sets of labels for all extractions) - 23. Press [F8] Print Worksheet. - 24. Press [SF5] Main menu. - 25. Press [SF11] Print. - 26. Press [SF6] Accept batch. - 27. Press [Pause/Break] to exit to the Main Menu. - 28. Obtain worksheets (FBLASER3) and labels (FBLABEL13-16) from the Analytical Section printing bench (Room 6117). - 6. Remove the tubes from the Thermo mixer and add to a rack, increase the temperature on the Thermomixer to 65°C (for use in the Elution steps). - 7. Transfer the substrate from the original tube to a DNA IQ™ Spin Basket using autoclaved twirling sticks. Centrifuge the Spin basket for 2 minutes at room temperature at its maximum speed. Once completed, remove the spin basket & retain in the original 5ml tube. Ensuring minimal contamination and transfer the extract to a labelled 2mL SSI sterile screw tube. - 8. Transfer the remaining extract from the original tube to the corresponding 2mL tube. Vortex the tube gently. - 9. Add 550 µL of Lysis Buffer to each tube. - 10. Into a separate, clean 2mL SSI tube, aliquot the required amount of lysis buffer for the Resin solution. Ensure that the DNA IQ™ Resin solution has been thoroughly mixed by vortexing the resin bottle before adding the required resin volume to the lysis buffer. Pipette mix the solution to clear the tip of any lingering resin beads. Mix the solution by inverting the tube to prevent bubbles forming. - 11. Add 50µL of DNA IQ™ Resin-Lysis solution into each tube. Invert the resin-lysis tube at regular intervals to keep the resin suspended within the solution to ensure uniform results. - 12. Vortex each tube for 3 seconds at high speed before placing the tubes in the Multitubeshaker set at 1200 rpm to incubate at room temperature for 5 minutes. - 13. Remove from the Multitubeshaker and vortex the tubes for 2 seconds at high speed before placing the tubes in the magnetic stand. Separation will occur instantly. **Note:** If resin does not form a distinct pellet on the side of the tube, or if the pellet has accidentally mixed with the solution while in the stand, vortex the tube and quickly place back in the stand. 14. Carefully remove all of the solution in the tube into the original 1.5mL tube (i.e. the tube which originally contained the substrate), ensuring that the resin is not disturbed from its place on the side of the tube. Note: If some resin is drawn up in tip, gently expel resin back into tube to allow reseparation. - 15. Add 125µL of prepared Lysis Buffer and vortex for 2 seconds at high speed. Return the tubes to the magnetic stand and allow for separation to occur. Once separation has occurred again remove the Lysis Buffer into the original 1.5mL tube (i.e. the tube which originally contained the substrate). - 16. Add 100μL of prepared 1X Wash Buffer and vortex for 2 seconds at high speed. Return tube to the magnetic stand and once separation has occurred remove and discard all Wash Buffer. - 17. Repeat Step 16 another two times for a total of three washes. Ensure that all of the solution has been removed after the last wash. - 18. Wipe down a Biohazard hood with bleach followed by ethanol. Uncap the tubes, placing the lids inside down onto a clean rediwipe in consecutive order and place the tubes in the same order into a clean plastic rack. Air-dry the resin in the hood for 15